Klasifikasi Tingkat Depresi Mahasiswa Menggunakan Image Recognition dengan Support Vector Machine

Authors

  • Siti Nurmardia Abdussamad Gorontalo State University
  • Nadya Pratiwi Doholio Universitas Negeri Gorontalo, Indonesia
  • Wahyu Pratama Lasaleng Universitas Negeri Gorontalo, Indonesia
  • Putu Ayu Indah N. Usia Universitas Negeri Gorontalo, Indonesia
  • Mohamad Iswanto Rahman Universitas negeri Gorontalo, Indonesia
  • Dwi Putri Juniar Adam Universitas Negeri Gorontalo, Indonesia

DOI:

https://doi.org/10.55657/rmns.v4i1.193

Keywords:

Depression, Image Recognition, Support Vector Machine

Abstract

Mental health problems in Indonesia are increasing, with university students being one of the groups vulnerable to depression due to academic pressure, social expectations, and exposure to negative information. Early detection of depression still relies on questionnaire methods that have limitations in objectivity and accuracy. Therefore, this research aims to develop a classification system for student depression using image recognition technology with Support Vector Machine (SVM). The system analyses students' facial expressions and combines them with questionnaire results to improve the accuracy of early depression detection. The results showed that out of 131 respondents, 74% experienced moderate depression, with academic pressure as the main factor. This finding is consistent with the condition of final-year students who face high academic loads. With this method, early detection of depression is more accurate than conventional methods, which can help intervene more quickly in dealing with student mental health crises.

Downloads

Download data is not yet available.

References

N. Khalish, ‘Indonesia Darurat Kesehatan Jiwa, 1 dari 10 Orang Idap Gangguan Mental’, Rumah Sakit Jiwa Aceh. Accessed: Jan. 31, 2025. [Online]. Available: https://rsj.acehprov.go.id/berita/kategori/artikel/indonesia-darurat-kesehatan-jiwa-1-dari-10-orang-idap-gangguan-mental

Dinas Kesehatan Daerah Istimewa Yogyakarta, ‘Kesehatan Mental dan Gizi: Bagaimana Keduanya Berhubungan dalam Mempengaruhi Kualitas Hidup?’ Accessed: Jan. 31, 2025. [Online]. Available: https://dinkes.jogjaprov.go.id/berita/detail/kesehatan-mental-dan-gizi-bagaimana-keduanya-berhubungan-dalam-mempengaruhi-kualitas-hidup

A. B. Nugroho, H. B. Al Asri, and A. A. Pramesti, ‘SURVEI KESADARAN MENTAL MAHASISWA UPN VETERAN YOGYAKARTA DI ERA DIGITAL DAN COVID-19’, Jurnal Kesehatan Masyaralat (e-Journal), vol. 10, no. 1, 2022, [Online]. Available: http://ejournal3.undip.ac.id/index.php/jkm

R. Fauziyyah, R. C. Awinda, and Besral, ‘Dampak Pembelajaran Jarak Jauh terhadap Tingkat Stres dan Kecemasan Mahasiswa selama Pandemi COVID-19’, Jurnal Biostatistik, Kependudukan, dan Informatika Kesehatan, vol. 1, no. 2, Mar. 2021, doi: 10.7454/bikfokes.v1i2.1011.

N. Muhamad, ‘Ada 971 Kasus Bunuh Diri sampai Oktober 2023, Terbanyak di Jawa Tengah’, databoks. Accessed: Jan. 31, 2025. [Online]. Available: https://databoks.katadata.co.id/demografi/statistik/d46526aff6a2134/ada-971-kasus-bunuh-diri-sampai-oktober-2023-terbanyak-di-jawa-tengah

T. S. Pratama and A. A. Soebroto, ‘Sistem Pakar untuk Deteksi Dini Tingkat Depresi Mahasiswa menggunakan Metode Support Vector Machine (Studi Kasus: Fakultas Ilmu Komputer Universitas Brawijaya)’, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 1, pp. 105–111, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

T. M. Wijiasih, R. N. S. Amriza, and D. A. Prabowo, ‘JISA (Jurnal Informatika dan Sains) The Classification of Anxiety, Depression, and Stress on Facebook Users Using the Support Vector Machine’, JISA (Jurnal Informatika dan Sains), vol. 5, no. 1, 2022.

H. Syahputra, S. I. Naibaho, M. A. Maulana, I. Zulfahmi, and E. P. Sinaga, ‘Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa’, BINA INSANI ICT JOURNAL, vol. 10, no. 1, pp. 52–61, 2023.

ASHADULLAH, ‘CKPLUS CK+ dataset for facial expression recognition’, Kaggle. Accessed: Jan. 31, 2025. [Online]. Available: https://www.kaggle.com/datasets/shawon10/ckplus

N. S. Parameswaran and D. Venkataraman, ‘A computer vision based image processing system for depression detection among students for counseling’, Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 1, pp. 503–512, Apr. 2019, doi: 10.11591/ijeecs.v14.i1.pp503-512.

Downloads

Published

31-01-2025

How to Cite

[1]
S. N. Abdussamad, N. P. Doholio, W. P. Lasaleng, P. A. I. N. Usia, M. I. Rahman, and D. P. J. Adam, “Klasifikasi Tingkat Depresi Mahasiswa Menggunakan Image Recognition dengan Support Vector Machine ”, Res. Math. Nat. Sci., vol. 4, no. 1, pp. 30–36, Jan. 2025.