Layoff Sentiment on Indonesian Twitter: Naïve Bayes Benchmarks and Human Resource Communication Strategy
DOI:
https://doi.org/10.55657/jpmb.v4i02.285Keywords:
Workforce reduction, public sentiment, organizational communication, reputational risk, social media analysisAbstract
In 2022, widespread workforce reductions in Indonesia precipitated extensive public discourse on social media platforms, particularly Twitter. While organizational downsizing is frequently adopted as a strategic response to economic uncertainty, empirical evidence suggests it may adversely affect corporate reputation and stakeholder trust, especially when communication is inadequate. This study examines public sentiment toward layoffs by analyzing tweets containing the Indonesian term “PHK” from November to December 2022. Employing automated sentiment classification and social network analysis, the research identifies sentiment distribution and thematic patterns in user-generated content. Findings reveal a sentiment distribution of 40% neutral, 37% negative, and 23% positive, with negative sentiment predominantly associated with job insecurity and neutral discourse reflecting informational reporting. These results align with existing literature on the reputational risks of downsizing. The study advocates for proactive stakeholder mapping, empathetic communication, and real-time sentiment monitoring. Timely dissemination of factual updates and responsive engagement may mitigate reputational damage and prevent sentiment drift. Strategic communication before, during, and after workforce restructuring is essential to preserve organizational legitimacy and minimize adverse market reactions.
References
Al Olaimat, F., Habes, M., Al Hadeed, A. Y., & Al Jwaniat, M. I. (2022). Reputation management through social networking platforms for PR purposes: A SEM-based study in the Jordan. Frontiers in Communication, 7. https://doi.org/10.3389/fcomm.2022.1009359
Alabid, N. N., & Katheeth, Z. D. (2021). Sentiment analysis of twitter posts related to the covid-19 vaccines. Indonesian Journal of Electrical Engineering and Computer Science, 24(3), 1727–1734. https://doi.org/10.11591/ijeecs.v24.i3.pp1727-1734
Atkins, R., & Favreau, C. (2022). The effects of layoffs and plant closings on manufacturers’ market value. International Journal of Production Economics, 245(January 2021), 108392. https://doi.org/10.1016/j.ijpe.2021.108392
Atsqalani, H., Hayatin, N., & Aditya, C. S. K. (2022). Sentiment Analysis from Indonesian Twitter Data Using Support Vector Machine And Query Expansion Ranking. Jurnal Online Informatika, 7(1), 116–122. https://doi.org/10.15575/join.v7i1.669
Benedetto, F., & Tedeschi, A. (2016). Big data sentiment analysis for brand monitoring in social media streams by cloud computing. In Studies in Computational Intelligence (pp. 341–377). Springer Verlag.
CNBC. (2024). 2023 Layoffs Will Continue to Affect Workers in 2024, Report Says. https://www.cnbc.com/2024/01/03/2023-layoffs-will-continue-to-affect-workers-in-2024-report-says.html
DetikInet. (2022). Daftar Startup yang Melakukan PHK di 2022. https://inet.detik.com/tech-in-life/d-6456789/daftar-startup-yang-melakukan-phk-di-2022
Dewi, I. R. (2022). Giliran Shopee, Korban Badai PHK Startup Global 120.000 Orang. CNBC Indonesia. https://www.cnbcindonesia.com/tech/20220919132327-37-373211/giliran-shopee-korban-badai-phk-startup-global-120000-orang
Fadhilah, I. (2022). Terkuak! Ini yang Diduga Biang Kerok Startup RI PHK Massal. DetikFinance. https://finance.detik.com/berita-ekonomi-bisnis/d-6419590/terkuak-ini-yang-diduga-biang-kerok-startup-ri-phk-massal%0A
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 Relation Between Training and Testing Sets : A Pedagogical Explanation. Departmental Technical Reports (CS), 1–6.
Gupta, B., Negi, M., Vishwakarma, K., Rawat, G., & Badhani, P. (2017). Study of Twitter Sentiment Analysis using Machine Learning Algorithms on Python. International Journal of Computer Applications, 165(9), 29–34. https://doi.org/10.5120/ijca2017914022
Intellizence. (2023). Top 11 Largest Layoffs Announced in 2023. https://intellizence.com/insights/layoff-downsizing/top-11-largest-layoffs-announced-in-2023/
Kompas. (2022). Startup PHK Massal, Ini Daftar Perusahaannya. https://tekno.kompas.com/read/2022/11/10/15050057/startup-phk-massal-ini-daftar-perusahaannya
Kurniawan, B. O. (2022). Social Network Analysis On Twitter Sentiment Data Using Netlytic (Case Study: ‘Ganjar’ And ‘World Cup’). Journal of Information Systems, Digitization and Business, 1(1), 15–22. https://doi.org/10.38142/jisdb.v1i1.652
Landsman, V., & Stremersch, S. (2020). The Commercial Consequences of Collective Layoffs: Close the Plant, Lose the Brand? Journal of Marketing, 84(3), 122–141. https://doi.org/10.1177/002224291990127
McGregor, S. C. (2019). Social media as public opinion: How journalists use social media to represent public opinion. Journalism, 20(8), 1070–1086. https://doi.org/SAGE Publications Ltd
McKinsey & Company. (2023). The State of Organizations 2023: Ten shifts Redefining The Organization. https://www.mckinsey.com
Permana, F. C., Wicaksono, Z. M., Kurniawan, C., Abdullah, A. S., & Ruchjana, B. N. (2021). Perception analysis of the Indonesian society on twitter social media on the increase in BPJS kesehatan contribution in the Covid 19 pandemic era. Journal of Physics: Conference Series, 1722(1). https://doi.org/10.1088/1742-6596/1722/1/012022
Priadana, A., & Rizal, A. A. (2021). Sentiment Analysis on Government Performance in Tourism During The COVID-19 Pandemic Period With Lexicon Based. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 7(1), 28–39. https://doi.org/10.18860/ca.v7i1.12488
Putri, A. M. H. (2022). Badai PHK Startup 2022 Sudah Segini, 2023 Bakal Ngeri? CNBC Indonesia. https://www.cnbcindonesia.com/tech/20221202073412-37-393104/badai-phk-startup-2022-sudah-segini-2023-bakal-ngeri%0A
Rahaman, A., Kuri, R., Islam, S., Hossain, M. J., & Kabir, M. H. (2021). Sarcasm Detection in Tweets: A Feature-based Approach using Supervised Machine Learning Models. International Journal of Advanced Computer Science and Applications, 12(6), 454–460. https://doi.org/10.14569/IJACSA.2021.0120651
Rathore, A. K., Kar, A. K., & Ilavarasan, P. V. (2017). Social media analytics: Literature review and directions for future research (pp. 229–249). INFORMS Inst.for Operations Res.and the Management Sciences. https://doi.org/15458504
Rizaty, M. A. (2022). Pengguna Twitter di Indonesia Capai 18,45 Juta pada 2022. Dataindonesia.Id. https://dataindonesia.id/digital/detail/pengguna-twitter-di-indonesia-capai-1845-juta-pada-2022
Rohimi, P. (2021). SNA dengan Netlytic Pada Kolom Komentar Video Youtube Gus Miftah Ceramah di Gereja. Proceeding of The 1st Conference on Strengthening Islamic Studies in the Digital Era (FICOSIS), 1(1), 360–377. https://doi.org/10.21154/dialogia.v15i2.1192.4
Sahayak, V., Shete, V., & Pathan, A. (2015). Sentiment Analysis on Twitter Data. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 2(1), 178–183.
Schulz, A. C., & Johann, S. (2018). Downsizing and the fragility of corporate reputation: An analysis of the impact of contextual factors. Scandinavian Journal of Management, 34(1), 40–50. https://doi.org/10.1016/j.scaman.2017.11.004
Syahputra, R., Yanris, G. J., & Irmayani, D. (2022). SVM and Naïve Bayes Algorithm Comparison for User Sentiment Analysis on Twitter. Sinkron, 7(2), 671–678. https://doi.org/10.33395/sinkron.v7i2.11430
Wahyuni, E. D., Arifiyanti, A. A., & Afandi, M. I. (2021). Feature Extraction for Sentiment Analysis in Indonesian Twitter. 2021, 86–92. https://doi.org/10.11594/nstp.2021.0913
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ihda Khairunisa Ikrima, Amalia Rizky Mulyana

This work is licensed under a Creative Commons Attribution 4.0 International License.


