Perbandingan Metode K-Means dan K-Medoids Dengan Validitas Davies-Bouldin Indeks, Dunn Indeks dan Indeks Connectivity Pada Pengelompokkan Masyarakat Penerima Bantuan Langsung Tunai
DOI:
https://doi.org/10.55657/rmns.v4i1.190Keywords:
K-Means, K-Medoids, Davies-Bouldin Indeks, Dunn Indeks, Connectivity Indeks, BLTAbstract
This study discusses the comparison between the K-Means and K-Medoids methods in grouping direct cash assistance (BLT) recipients, with an assessment using three validity indices: Davies-Bouldin Index (DBI), Dunn Index, and Connectivity Index. The main objective of this study is to determine the most effective clustering method for grouping BLT recipient data by considering the quality of the resulting clustering. In the experiment, the K-Means method with three clusters produced, namely: Cluster 1 with 10 family head members, Cluster 2 with 101 family head members, and Cluster 3 with 118 family head members. In contrast, the K-Medoids method also with three clusters, namely: Cluster 1 with 67 family head members, Cluster 2 with 59 family head members, and Cluster 3 with 103 family head members. Based on the evaluation using the Davies-Bouldin Index and Connectivity Index, the K-Means method showed better performance than K-Medoids. The DBI value for the K-Means method is 1,307, while the Connectivity Index value is 40,079, which shows that the K-Means clustering results are more effective in producing separate and quality clusters in the context of grouping BLT recipient communities.
Downloads
References
S. Sari and J. N. Utamajaya, “Sistem Pendukung Keputusan Penerima Bantuan Langsung Tunai Dana Desa Menggunakan Metode Algoritma K-Means Clustering,” J. JUPITER, vol. 14, no. 1, pp. 150–160, 2022.
D. Ortega, “Pelaksanaan Bantuan Langsung Tunai Dari Dana Desa Pada Masyarakat Terdampak Covid-19,” 2021, Sekolah Tinggi Pembangunan Masyarakat Desa STPMD" APMD".
Menter Keuangan Republik Indonesia, “Peraturan Menteri Keuangan Republik Indonesia Nomor 201/PMK.07/2022 Tentang Pengelolaan Dana Desa,” p. 1295, 2022.
I. Sofi, “Efektivitas Bantuan Langsung Tunai Dana Desa Dalam Pemulihan Ekonomi Di Desa,” Indones. Treas. Rev. J. Perbendaharaan, Keuang. Negara dan Kebijak. Publik, vol. 6, no. 3, pp. 247–262, 2021, doi: 10.33105/itrev.v6i3.280.
Z. Bula, R Resmawan, L. O. Nashar, dan S. K. Nasib, “Implementasi Imrpoved Chi-Square Automatic Interaction Detection pada Klasifikasi Faktor-Faktor Yang Mempengaruhi Literasi Informasi Generasi Muda,” J. Stat. App., vol. 6, no. 2, pp. 214–222, 2022. doi: https://doi.org/10.21009/JSA.06207.
M. W. Warolemba, R. Resmawan, dan D. R. Isa, “Analisis Cluster Fuzzy C-Means dan Diskriminan untuk Pengelompokan Data Kesejahteraan Rakyat,” SAINSMAT: J. Ilm. Ilmu. Peng. Alam., vol. 12, no. 2, pp. 141–152, 2023. doi: https://doi.org/10.35580/sainsmat122446492023.
I. K. Hasan, R. Resmawan, dan J. Ibrahim, “Perbandingan K-Nearest Neighbor dan Random Forest dengan Seleksi Fitur Information Gain untuk Klasifikasi Lama Studi Mahasiswa,” Indonesian. J. App. Stat., vol. 5, no. 1, pp. 58–66, 2022. doi: https://doi.org/10.13057/ijas.v5i1.58056.
D. Widyadhana, R. B. Hastuti, I. Kharisudin, and F. Fauzi, “Perbandingan Analisis Klaster K-Means dan Average Linkage untuk Pengklasteran Kemiskinan di Provinsi Jawa Tengah,” Prism. Pros. Semin. Nas. Mat., vol. 4, pp. 584–594, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/
R. Yuliani, “Penerapan Data Mining untuk Mengcluster Data Penduduk Miskin Menggunakan Algoritma K-Means di Dusun Bagik Endep Sukamulia Timur,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 39–50, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nur Ain Kilo, Muhammad Rifai Katili, Isran K Hasan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.