Peramalan Inflasi di Provinsi Gorontalo Menggunakan Metode General Regression Neural Network (GRNN)
DOI:
https://doi.org/10.55657/rmns.v3i1.150Keywords:
Forecasting, INFLATION, JST, Artificial Neural Network, MAPEAbstract
Forecasting the inflation rate is important because the results obtained are used as an indicator that can influence the policies that will be made later. One policy that uses the results of this forecasting as one of the things that can influence it is economic policy and monetary policy. In this study, the method used is the general regression neural network (GRNN). This forecast is applied to inflation data in Gorontalo Province from January 2008 to April 2023, with the conclusion that it produces an inflation forecast for May – December 2023 with a MAPE value of 3.24% or an accuracy rate of 96.76%.
Downloads
References
A. Dajan, Pengantar Metode Statistik. Jakarta: LP3ES, 1995.
A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” SinkrOn, vol. 2, no. 2, pp. 37–43, 2017.
W. A. Marlina, S. Susiana, E. N, and F. A. Ahmad, “Forecasting technique using time sequence: model penentuan volume produksi Sanjai di UKM Rina Payakumbuh,” J. Manaj., vol. 9, no. 2, p. 187, Dec. 2018, doi: 10.32832/jm-uika.v9i2.1567.
R. E. Caraka, H. Yasin, and A. Prahutama, “Pemodelan General Regression Neural Network (GRNN) pada Data Return Indeks Harga Saham Euro 50,” J. Gaussian, vol. 4, no. 2, 2015.
E. F. Rahayuningtyas, G. Wasis Wicaksono, and D. R. Chandranegara, “Prediction of Yuan to IDR Exchange Rate using General Regression Neural Network,” in 2021 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), Oct. 2021, pp. 1–6, doi: 10.1109/ICOMITEE53461.2021.9650304.
F. A. Y. Putri, “Studi Komparasi Peramalan Harga Minyak Mentah Menggunakan Metode Generalized Regression Neural Network dan Feed Forward Neural Network,” Universitas Islam Indonesia, 2018.
M. Alkaff and Y. Sari, “Penerapan Generalized Regression Neural Networks untuk Memprediksi Produksi Padi Terhadap Perubahan Iklim,” J. Teknol. Rekayasa, vol. 2, no. 2, p. 117, Dec. 2017, doi: 10.31544/jtera.v2.i2.2017.117-124.
L. P. W. Adnyani and S. Subanar, “General Regression Neural Network (GRNN) pada Peramalan Kurs Dolar dan Indeks Harga Saham Gabungan (IHSG),” Fakt. Exacta, vol. 8, no. 2, 2015.
Z. Izzah, “Sistem Peramalan Jumlah Pengunjung Wisata Religi Sunan Drajat Dengan Metode Least Square,” Universitas Islam Lamongan, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Isran K Hasan; Novianita Achmad; Putri Lapitung

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.