Pengelompokan Data Stunting di Indonesia Menggunakan Metode X-Means dan Agglomerative Hierarchical Clustering
DOI:
https://doi.org/10.55657/rmns.v4i1.201Keywords:
X-Means, Agglomerative Hierarchical Clustering, StuntingAbstract
Stunting is one of the serious problems that threaten the quality of human resources in Indonesia. This study aims to analyze the patterns and characteristics of stunting in Indonesia by applying the X-Means clustering method and Agglomerative Hierarchical Clustering (AHC). The X-Means method is used to determine the optimal number of clusters automatically by utilizing the Bayesian Information Criterion (BIC), while AHC forms a dendrogram to understand the multilevel structure of the clusters formed. Based on the analysis, the X-Means method produces three optimal clusters with the smallest BIC value of 651.9475, where cluster 1 consists of 17 provinces, cluster 2 includes 12 provinces, and cluster 3 includes 5 provinces. The AHC method with the Single Linkage approach also produced three optimal clusters, with cluster 1 covering 32 provinces, cluster 2 consisting of 1 province (West Nusa Tenggara), and cluster 3 covering 1 province (East Nusa Tenggara), as well as the highest Silhouette Index value of 0.28. The results show that both methods provide a comprehensive picture of stunting patterns in Indonesia, which can be used as a basis for designing more targeted intervention programs according to the characteristics of each cluster. This data-driven strategy is expected to increase policy effectiveness in reducing stunting in Indonesia.
Downloads
References
S. Ningsih, M. R. Madonsa, S. L. Mahmud, I. Djakaria, and S. K. Nasib, “Implementasi Regresi Logistik Biner Stratifikasi Pada Pemodelan Stunting Untuk Anak Balita Di Kabupaten Gorontalo,” Jambura J. Probab. Stat., vol. 5, no. 1, pp. 19–23, 2024, doi: 10.37905/jjps.v5i1.19793.
Kemenkes, “hasil studi status gizi indonesia (SSGI) tingkat nasional, provinsi dan kabupaten/kota tahun 2021,” Buana Ilmu, vol. 2, no. 1, 2017, doi: 10.36805/bi.v2i1.301.
N. Moroke, “Faculty of Economic and Management Sciences ‘ On Multivariate Analysis of High-dimensional data ,’” 2019.
N. A. Kilo, M. R. Katili, and I. K. Hasan, “Research in the Mathematical and Natural Sciences Perbandingan Metode K-Means dan K-Medoids Dengan Validitas Davies-Bouldin Indeks , Dunn Indeks dan Indeks Connectivity Pada Pengelompokkan Masyarakat Penerima Bantuan Langsung Tunai,” vol. 4, no. 1, pp. 8–15, 2025, doi: 10.55657/rmns.v4i1.190.
G. D. Rembulan, T. Wijaya, D. Palullungan, K. N. Alfina, and M. Qurthuby, “Kebijakan Pemerintah Mengenai Coronavirus Disease (COVID-19) di Setiap Provinsi di Indonesia Berdasarkan Analisis Klaster,” JIEMS (Journal Ind. Eng. Manag. Syst., vol. 13, no. 2, 2020, doi: 10.30813/jiems.v13i2.2280.
Y. T. Chen and D. M. Witten, “Selective inference for k-means clustering,” vol. 24, pp. 1–20, 2022, [Online]. Available: http://arxiv.org/abs/2203.15267
D. Aulia et al., “Penerapan Algoritma K-Means dalam Proses Clustering Penilaian Kinerja ASN,” J. Ris. Sist. Inf. Dan Tek. Inform., vol. 6, p. 47, 2021, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jurasik
P. H. Putra, A. Hasibuan, and E. A. Marpaung, “Analisis Klasifikasi Metode X-Means Pada Minat dan Bakat Anak Dimasa Pandemi,” SITEKIN J. Sains, Teknol. dan Ind., vol. 19, no. 2, pp. 424–429, 2022, [Online]. Available: https://ejournal.uin-suska.ac.id/index.php/sitekin/article/download/17889/7834
C. Ramdani, “ELANG: Journal of Interdisciplinary Research Komparasi Algoritme X-Means dan K-Medoids pada Klasterisasi Data Akademik Mahasiswa,” 2023.
dan S. Putra, Y. D., Sudarma, M., “Clustering history data penjualan menggunakan algoritma k-means,” vol. 20(2):195, 2021.
M. R. Sulistio, N. Suarna, and O. Nurdiawan, “Analisa Penerapan Metode Clustering X-Means Dalam Pengelompokan Penjualan Barang,” J. Teknol. Ilmu Komput., vol. 1, no. 2, pp. 37–42, 2023, doi: 10.56854/jtik.v1i2.49.
L. Zahrotun et al., “Analisis Persebaran UMKM Bidang Jasa Menggunakan Metode AHC Complete Linkage,” vol. 4, no. 2, pp. 255–265, 2023.
S. Suhirman and H. Wintolo, “System for Determining Public Health Level Using the Agglomerative Hierarchical Clustering Method,” Compiler, vol. 8, no. 1, p. 95, 2019, doi: 10.28989/compiler.v8i1.425.
T. Märzinger, J. Kotík, and C. Pfeifer, “Application of hierarchical agglomerative clustering (Hac) for systemic classification of pop-up housing (puh) environments,” Appl. Sci., vol. 11, no. 23, 2021, doi: 10.3390/app112311122.
Kemenkes, “Hasil Survei Status Gizi Indonesia (SSGI) 2022. Kementrian Kesehatan Indonesia,” pp. 1–7, 2023.
H. A. dan N. Abbass, Data Mining: A Heuristic Approach. 2003. doi: 10.1108/14684520310502315.
S. Prasetyadi, Buku Ajar Data Maining. 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nur Dhea Wahab, Salmun K. Nasib, Nurwan, Djihad Wungguli, Nisky Imansyah Yahya

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.