Implementasi Model Cox Stratifikasi Interaksi dan Tanpa Interaksi untuk Mengidentifikasi Faktor-Faktor Laju Kesembuhan Pasien TB Paru

Authors

  • Fakhira Modeong Universitas Negeri Gorontalo
  • Dewi Rahmawaty Isa Universitas Negeri Gorontalo
  • Ismail Djakaria Universitas Negeri Gorontalo
  • Muhammad Rezky Friesta Payu Universitas Negeri Gorontalo
  • Sri Lestari Mahmud Universitas Negeri Gorontalo

DOI:

https://doi.org/10.55657/rmns.v2i2.130

Keywords:

Cox Proportional Hazard Regression, Stratified Cox Regression, Pulmonary Tuberculosis

Abstract

This study aims to determine the factors that most influence the rate of recovery of pulmonary tuberculosis patients using the Cox Proportional Hazard model. In the case of the cure rate of pulmonary tuberculosis patients, not all independent variables meet the proportional hazard assumption, so the stratified cox regression model is used. The stratified cox regression model used is the stratified cox model with interaction and without interaction involving pulmonary tuberculosis patients in one of the Gorontalo Hospitals. The results showed that the variables of shortness of breath, previous pulmonary tuberculosis patients, and smoking habits were the most significant factors affecting the recovery rate of pulmonary tuberculosis patients.

Downloads

Download data is not yet available.

References

G. Ginanjar, TBC Pada Anak, Edisi I. Jakarta: Dian Rakyat, 2008.

R. A. Werdhani, “Patofisiologi, Diagnosis dan Klasifikasi Tuberkolosis,” Universitas Indonesia, 2014.

J. Harlan, Analisis Survival. Jakarta: Gunadarma, 2017.

Klein and Kleinbaum, Survival Analysis: A Self Learning Text. London: Springer, 2012.

R. Pahlevi, Mustafid, and T. Wuryandari, “Model Regresi Cox Stratified Pada Data Ketahanan,” J. Gaussian, vol. 5, no. 3, pp. 455–464, 2016.

W. Sanusi, A. Alimuddin, and A. D. Nurbidatun, “Model Regresi Cox Non Proporsional Hazard dan Aplikasinya pada Data Ketahanan Hidup Pasien Penderita Tuberkulosis di Balai Besar Kesehatan Paru Masyarakat Makassar,” J. Math. Comput. Stat., vol. 1, no. 1, pp. 46–61, 2018, doi: https://doi.org/10.35580/jmathcos.v1i1.9177.

W. Safitri, T. Wuryandari, and S. Suparti, “Analisis Ketahanan Hidup Penderita Tuberkulosis Dengan Menggunakan Metode Regresi Cox Kegagalan Proporsional (Studi Kasus di Puskesmas Kecamatan Kembangan Jakarta Barat),” J. Gaussian, vol. 5, no. 4, pp. 781–790, 2016, doi: https://doi.org/10.14710/j.gauss.5.4.781-790.

E. . Lee and J. . Wang, Statistical Methods for Survival Data Analysis, Third. New Jersey: John Wiley & Sons, Inc, 2003.

R. . Miller, Survival Analysis. New York: John Weley & Sons, 1981.

D. Collett, Modelling Survival Data in Medical Research. London: Chapman & Hall/CRC, 2003.

M. Iskandar, “Model Cox Proportional Hazard Pada Kejadian Bersama,” Skripsi. Universitas Negeri Yogyakarta. Yogyakarta, 2015.

S. G. Heeringa, B. T. West, and P. A. Berglund, Applied Survey Data Analysis. Florida: Taylor and Francis Group, 2010.

S. Guo, Survival Analysis. New York: Oxford University Press, Inc, 2010.

P. K. Anderson and R. D. Gill, “Cox’s Regression Models for Counting Processes: A large Sample Study",” Ann. Stat., vol. 10, no. 4, pp. 1100–1120, 1982.

P. Grambsch and T. Therneau, “Proportional Hazards Tests and Diagnostics Based on Weighted Residuals,” Biometrika, vol. 81, no. 3, pp. 515–526, 1994, doi: https://doi.org/10.1093/biomet/81.3.515.

Downloads

Published

09-10-2023

How to Cite

[1]
F. Modeong, D. R. Isa, I. Djakaria, M. R. F. Payu, and S. L. Mahmud, “Implementasi Model Cox Stratifikasi Interaksi dan Tanpa Interaksi untuk Mengidentifikasi Faktor-Faktor Laju Kesembuhan Pasien TB Paru”, Res. Math. Nat. Sci., vol. 2, no. 2, pp. 80–98, Oct. 2023.

Most read articles by the same author(s)