Operasi Cross-Union pada Koleksi Himpunan Koteri Majority
DOI:
https://doi.org/10.55657/rmns.v1i2.61Keywords:
Quorum, Majority Coterie, Non-Dominated Majority Coterie, Cross-Union OperationAbstract
Coterie is a collection of sets called quorum which satisfies that any two sets have a non-empty intersection and are not property contained in one another. Based on topology, there are many types of coterie, for example, majority coterie. The majority coterie is a type of coterie with more availability than others to solve the problem of a distributed system. There are two types of majority coterie, dominated and non-dominated. The coterie join algorithm is an easy way to construct a new coterie with sizes larger quorum. In this study, we define a union operation for a majority coterie, called a cross-union operation. Then we prove that by using this algorithm, a new coterie is non-dominated if and only if the initial coteries are non-dominated.
Downloads
References
G.H. Molina, and D. Barbara. "How to Assign Votes in A Distributed System", J. ACM., vol. 3, no. 4, pp. 841-860, 1985, doi: https://doi.org/10.1145/4221/4223.
M. Maekawa. "A √n Algorithm for Mutual Exclusion in Decentralized Systems," ACM Trans. Comput. Systems, vol. 3, no. 2, pp. 145-159, 1985, doi: https://doi.org/10.1145/214438.214445.
D. Agrawal, amd A. Abbadi. "An efficient and fault-tolerant solution for distributed mutual exclusion", ACM Trans. Comput. Systems, vol. 9, no. 1, pp. 1-20, 1991, doi: https://doi.org/10.1145/103727.103728.
D. F. Nurdin. "Konstruksi Grid Kubik untuk Masalah Sumber Daya Teralokasi (m,h,k_i)", Axiomath: Jurnal Matematika dan Aplikasinya, vol. 2 no. 2, pp. 6-9, 2020, doi: https://doi.org/10.46918/axiomath.v2i2.688.
H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae. "A Distributed k-Mutual Exclusion Algorithm Using k-Coterie", Elsevier Information Processing Letters, vol. 49, pp. 213-218, 1992, doi: https://doi.org/10.1016/0020-0190(94)90014-0.
T. Ibaraki, and T. Kameda. "A Teory of Coteries: Mutual Exclusion in Distributed Systems", IEEE Transaction on Parallel and Distributed System, vol. 4, no.7, pp. 779-794, Jul. 1993, doi: https://doi.org/10.1109/71.238300.
Y. Joung. "On Quorum Systems for Group Resources with Bounded Capacity", Lecturer Notes in Computer Science, vol. 3274, pp. 86-101, 2004, doi: https://doi.org.10.1007/978-3-540-30186-8_7.
A. Lawi, K. Oda, and T. Yoshida. "A Quorum Based Distributed Conflict Resolution Algorithm for Bounded Capacity Resource", Lecture Notes in Computer Science, vol. 4331, pp. 135-144, 2006, doi: https://doi.org/10.1007/11942634_15.
A. Arsal, A. Lawi, and A. K. Amir. "Construction of (h,k)-Coterie Quorum System Based on Majority Coterie" in Journal of Physics: Conference Series, 2019, 042019.
M. L. Neilsen, and M. Masaaki. "Coterie Join Algorithm", IEEE Transactions on Parallel and Distributed Systems, vol. 3 no. 5, pp. 582 – 590, Sept. 1992.
A. Lawi, K. Oda, and T. Yoshida. "A Quorum Based Group k-Mutual Exclusion Algorithm for Open Distributed Environments", Internasional Symposium on Parallel and Distributed Processing and Applications, vol. 3758, pp. 119 – 125, 2005, doi: 10.1007/11576235_16.
A. Lawi. "Operasi Join Diperluas Koteri-k Tak-Terdominasi" in Prosiding Seminar Nasional MIPA UNIPA, 2019, pp. 115-126.
E. Djunaidy, A. Lawi, and A. K. Amir. "k-Coterie and Coterie Join Operation" in Journal of Physics: Conference Series, 2019, 042020.
N. Nurhidayah, A. Lawi, and A. K. Amir. "A Union Operation of Non-Dominated k-Coterie in Distributed System", Journal Matematika, Statistika, & Komputasi, vol. 16 no. 3, pp. 375-381, 2020, doi: https://doi.org/10.20965/jmsk.v16i3.6940.
D. Peleg, and W. Avishai. (1995). "The availability of quorum systems", The Weizmann Institute, 1995.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Armayani Arsal, Setia Ningsih

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.